
(e)DNA-based approaches for aquatic bioassessment & monitoring: chances & challenges

Florian Leese, University of Duisburg-Essen, Germany COST Action DNAqua-Net (CA15219)

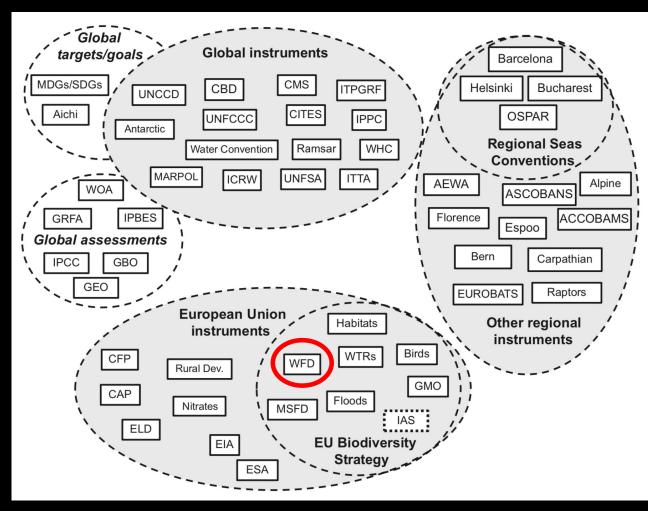
"eDNA & other molecular methods in env. monitoring" Nov. 12th 2021 SYKE, FI

DNAqua-Net (2016-2021)

- ~600 members
- 49 countries
- >100 publications and stakeholder reports
- connects labs, countries, disciplines

UNIVERSITÄT DUISBURG ESSEN

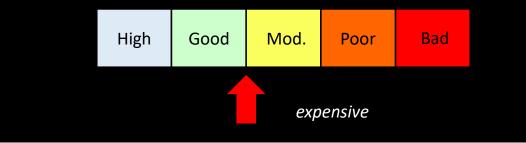
Open-Minded


Agnès Bouchez & Alexander Weigand

We need reliable monitoring data!

UNIVERSITÄT DUISBURG ESSEN

Open-Minded



Focus today: Community assessment!

Wetzel et al. (2015)

EU Water Framework Directive

- Very advanced piece of environmental legislation (Directive 2000/60/EC)
- Aim: 2027 surface waters good status
- Ecological status as primary determinant of management needs
- >100,000 water bodies monitored long-term data
- Decades of **intercalibration** (>400 intercalibrated methods)
- Published CEN/ISO standards for sampling / analysis
- But: Few BQEs, slow, errors, limited tax. resolution

2000	Directive entered into force	Art. 2
2003	Transposition into national legislation	Art. 23
	Identification of River Basin Districts and Authorities	Art. 3
2004	Characterization of river basin: pressures, impacts and economic analysis	Art. 5
2006	Establishment of monitoring network	Art. 8
	Start public consultation (at the latest)	Art. 14
2008	Present draft river basin management plan	Art. 13
2009	Finalize river basin management plan including programme of measures	Art. 13, 11
2010	Introduce pricing policies	Art. 9
2012	Make operational programmes of measures	Art. 11
2015	Meet environmental objectives	Art. 4
	First management cycle ends	
	Second river basin management plan & first flood	
	risk management plan	
2021	Second management cycle ends	Art. 4, 13
2027	Third management cycle ends	Art. 4, 13
	Final deadline for meeting objectives	

Continuous monitoring No deterioration

after http://ec.europa.eu

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Proposition:

"For better monitoring, forecasting and management we have to scale-up environmental monitoring.(e)DNA-based methods will play a central role here" Ann. Rev. Microbiol. 1986. 40:337–65 Copyright © 1986 by Annual Reviews Inc. All rights reserved

MICROBIAL ECOLOGY AND EVOLUTION: A RIBOSOMAL DW APPROACH

© Keystone (Tagesanzeiger.ch)


Gary J. Olsen, David J. Lane, Stephen J. O Norman R. Pace

Department of Biology and Institute for Molecular and Cellular I Indiana, Bloomington, Indiana 47405

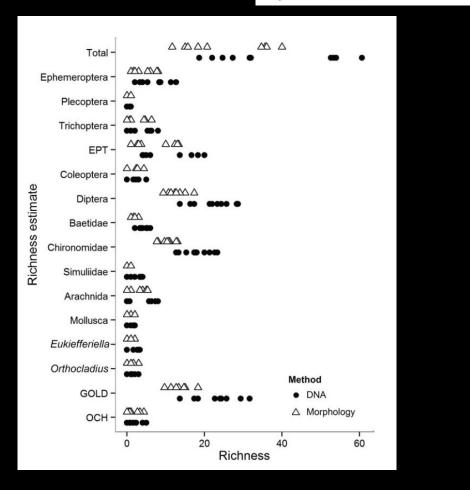
Strength is obvious

UNIVERSITÄT DUISBURG ESSEN

BOLD SYSTEMS

DNA differs even when morphology does not

MOLECULAR APPROACHES IN FRESHWATER ECOLOGY


Does DNA barcoding improve performance of traditional stream bioassessment metrics?

Eric D. Stein^{1,5}, Bryan P. Whita^{1,6}, Raphael D. Mazor^{1,7}, John K. Jackson^{2,8}, Juliann M. Battle^{2,9}, Peter E. Miller^{3,10}, Erik M. Pilgrim^{4,11}, and Bernard W. Sweeney^{2,12}

- ¹ Southern California Coastal Water Research Project, Costa Mesa, California 92626 USA
- $^{\rm 2}$ Stroud Water Research Center, Avondale, Pennsylvania 19311 USA
- ³ Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada N1G 2W1
- ⁴ National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio 45268 USA

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Relevant for bioassessment!

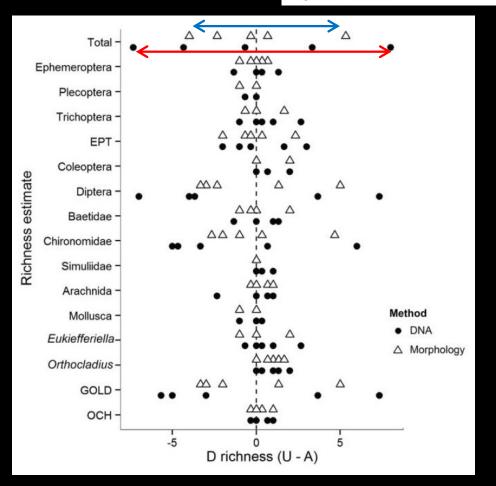
UNIVERSITÄT DUISBURG ESSEN

Open-Minded

MOLECULAR APPROACHES IN FRESHWATER ECOLOGY

Does DNA barcoding improve performance of traditional stream bioassessment metrics?

Eric D. Stein^{1,5}, Bryan P. Whita^{1,6}, Raphael D. Mazor^{1,7}, John K. Jackson^{2,8}, Juliann M. Battle^{2,9}, Peter E. Miller^{3,10}, Erik M. Pilgrim^{4,11}, and Bernard W. Sweeney^{2,12}


¹ Southern California Coastal Water Research Project, Costa Mesa, California 92626 USA

² Stroud Water Research Center, Avondale, Pennsylvania 19311 USA

³ Canadian Centre for DNA Barcoding, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, Canada N1G 2W1

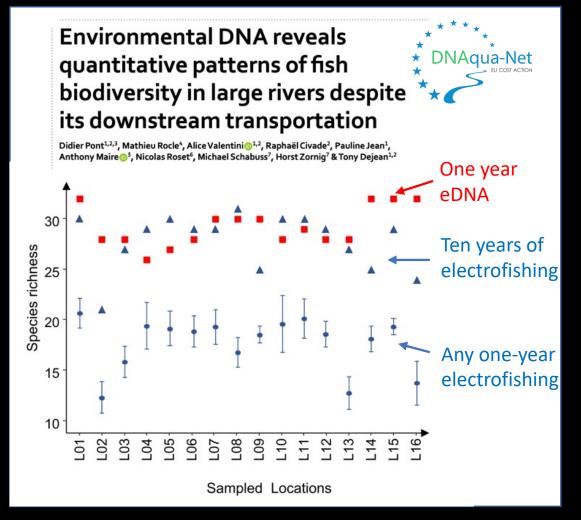
⁴ National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, Ohio 45268 USA

[But here: 1.7-3.4x more expensive]

DNA-based methods are needed to complement global biodiversity surveys

UNIVERSITÄT DUISBURG ESSEN

Offen im Denken



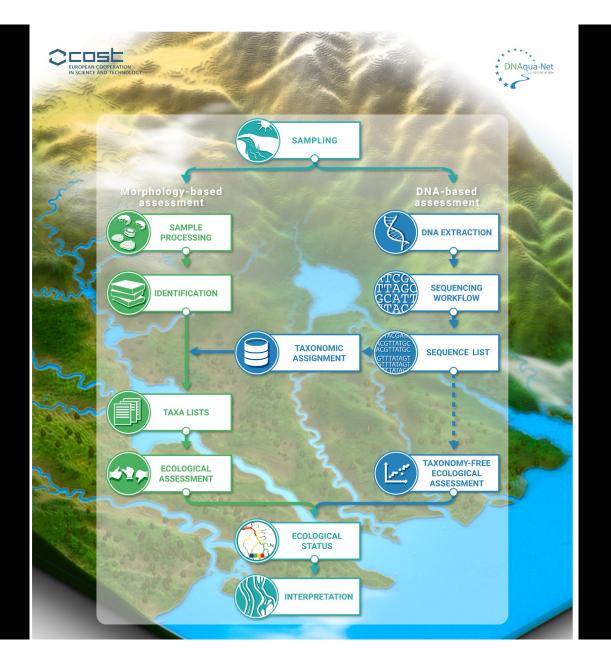
Elbrecht & Leese (2017)

"More with less" actually works for some BQEs

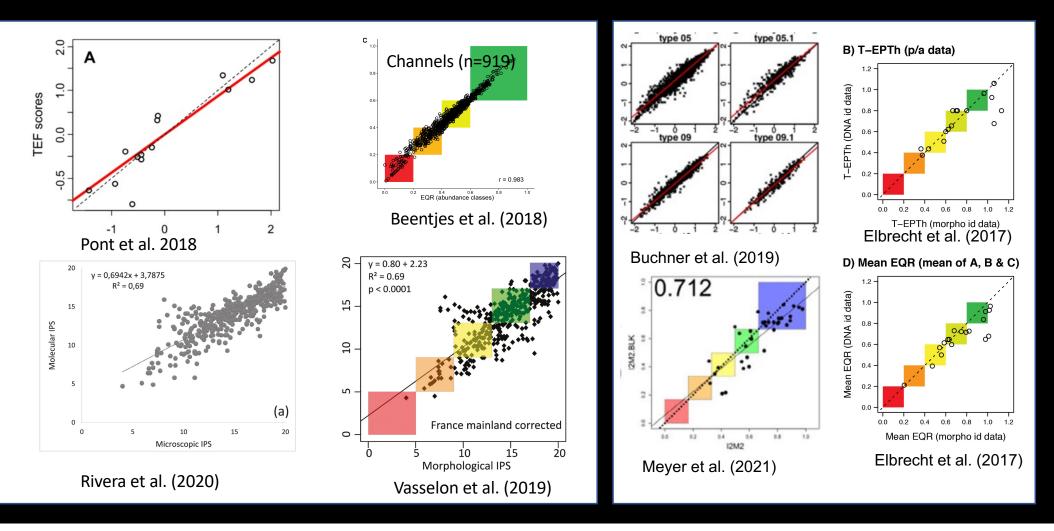
- eDNA analysis in a French stream (Rhône) shows great performance of eDNA for fish biodiversity assessments
- Many such studies reported from many different countries!

"More with less" actually works for some BQEs

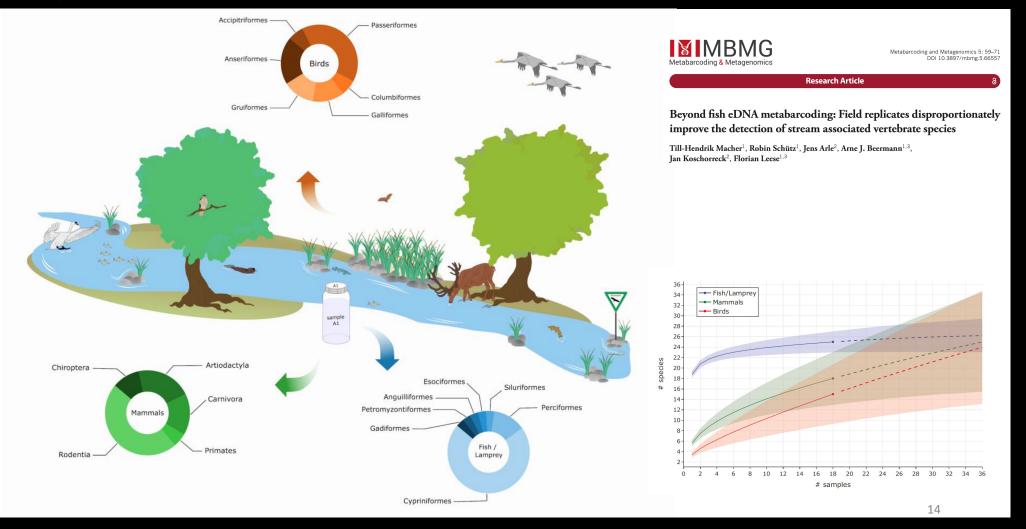
Species Relative Abundance Longitudinal Profil



JDS4 scientific report (2021) Data: Didier Pont


The idea is simple; in principle:

"Speed up sampling, replace microscopes by sequencers, recalibrate and move on"


(...and maybe use more of the amazing new data you get...)

Classical indices can be compatible with metabarcoding data

Beyond water

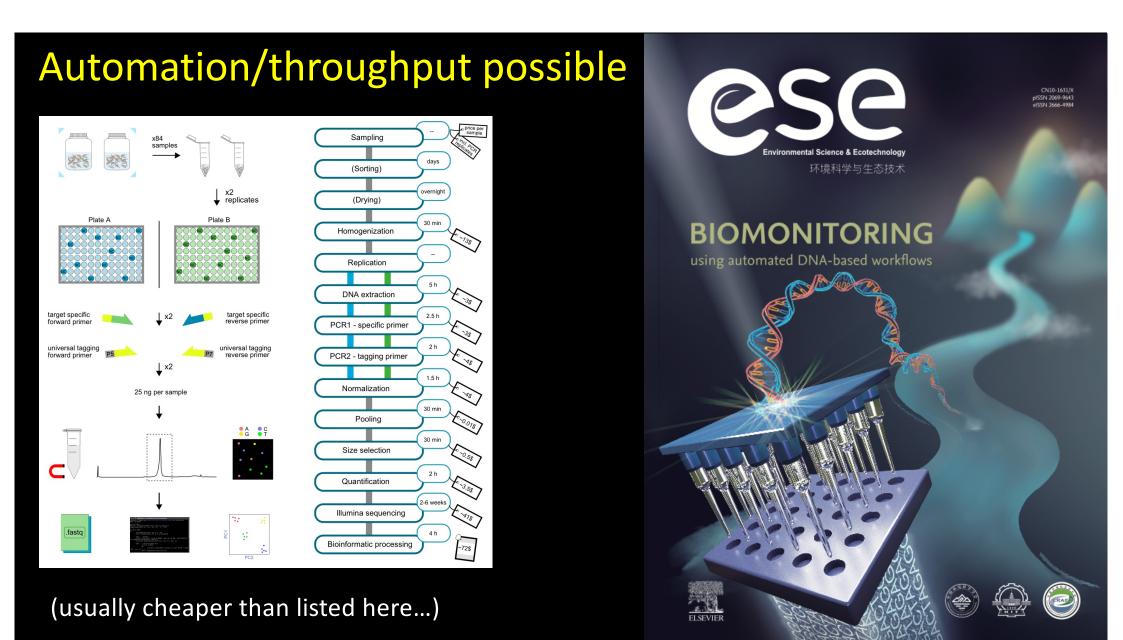
Automation/throughput possible

Contents lists available at ScienceDirect

Environmental Science and Ecotechnology journal homepage: www.journals.elsevier.com/environmental-science-andecotechnology/

Standardized high-throughput biomonitoring using DNA metabarcoding: Strategies for the adoption of automated liquid handlers

Dominik Buchner ^{a, 1}, Till-Hendrik Macher ^{a, 1}, Arne J. Beermann ^{a, b}, Marie-Thérése Werner ^a, Florian Leese ^{a, b, *}


^a University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141, Essen, Germany
^b University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 3, 45141, Essen, Germany

• Several hundred samples per week possible!

BIOMONITORING

using automated DNA-based workflows

CN10-1631/X pISSN 2069-9643 eISSN 2666-4984

Sampling the classical way and/or sampling environmental DNA

(semi-)automated handling

4 photos by Till Macher

What are the main roadblocks?

Revolution is not enough

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Bilder: WikiCommons

The ,four-field challenge'

Concept

- unrepresentative sampling
- new taxonomic / community information (e.g. terrestrial eDNA, gut content)
- abundance / biomass / copy-number vs. presence-absence data
- new reference conditions
- new metrics

Technology

- sample / storage conditions (e.g. preservation liquid, inhibitors)
- primer bias / PCR stochasticity
- misidentifications (e.g. wrong references, shared barcodes)
- reference database development
- (e.g. between reference list and results)

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

Perception

- new 'units' to quantify biodiversity
- new technical language
- more complex / integrative settings

,human dimension'

Economic & legal framework

- costs
- knowledge transfer
- legislative requirements
 (e.g. abundance data, intercalibration)

Reference databases

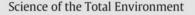
- For fish and macroinvertebrates the European Operational Taxalists are often well-covered (JDS4: 90%, 81%)
- Priorities defined to close gaps

Science of the Total Environment

Review

DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work

Hannah Weigand ^a, Arne J. Beermann ^b, Fedor Čiampor ^c, Filipe O. Costa ^{d.e}, Zoltán Csabai ^f, Sofia Duarte ^{d.e}, Matthias F. Geiger ^g, Michał Grabowski ^h, Frédéric Rimet ⁱ, Björn Rulik ^g, Malin Strand ^J, Nikolaus Szucsich ^k, Alexander M. Weigand ^{a.b}, Endre Willassen ¹, Sofia A. Wyler ^m, Agnès Bouchez ⁱ, Angel Borja ⁿ, Zuzana Čiamporová-Zaťovičová ^c, Sónia Ferreira ^o, Klaas-Douwe B. Dijkstra ^p, Ursula Eisendle ^q, Jörg Freyhof ^r, Piotr Gadawski ^h, Wolfram Graf ^s, Arne Haegerbaeumer ^t, Berry B. van der Hoorn ^p, Bella Japoshvili ^u, Lujza Keresztes ^v, Emre Keskin ^w, Florian Leese ^b, Jan N. Macher ^p, Tomasz Mamos ^h, Guy Paz ^x, Vladimir Pešić ^y, Daniela Maric Pfannkuchen ^z, Martin Andreas Pfannkuchen ^z, Benjamin W. Price ^{aa}, Buki Rinkevich ^x, Marcos A.L. Teixeira ^{d.e}, Gábor Várbíró ^{ab}, Torbjørn Ekrem ^{ac,*}


- → TRANSPARENT & OPEN DATA! Versioning, DOI...
- \rightarrow QA/QC basis
- \rightarrow Several countries working on this

Improve taxonomic backbone

- Improve available ref DB, link to ecological information
- Lot's of work, but low hanging fruits, taxonomic initatives exist; GBOL, BeBOL, SweBOL, iBOL, AquaBOL.sk, PolBOL etc.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/scitotenv

Review

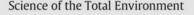
DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work

Hannah Weigand ^a, Arne J. Beermann ^b, Fedor Čiampor ^c, Filipe O. Costa ^{d.e}, Zoltán Csabai ^f, Sofia Duarte ^{d.e}, Matthias F. Geiger ^g, Michał Grabowski ^h, Frédéric Rimet ⁱ, Björn Rulik ^g, Malin Strand ^J, Nikolaus Szucsich ^k, Alexander M. Weigand ^{a,b}, Endre Willassen ¹, Sofia A. Wyler ^m, Agnès Bouchez ⁱ, Angel Borja ⁿ, Zuzana Čiamporová-Zaťovičová ^c, Sónia Ferreira ^o, Klaas-Douwe B. Dijkstra ^p, Ursula Eisendle ^q, Jörg Freyhof ^r, Piotr Gadawski ^h, Wolfram Graf ^s, Arne Haegerbaeumer ^t, Berry B. van der Hoorn ^p, Bella Japoshvili ^u, Lujza Keresztes ^v, Emre Keskin ^w, Florian Leese ^b, Jan N. Macher ^p, Tomasz Mamos ^h, Guy Paz ^x, Vladimir Pešić ^y, Daniela Maric Pfannkuchen ^z, Martin Andreas Pfannkuchen ^z, Benjamin W. Price ^{aa}, Buki Rinkevich ^x, Marcos A.L. Teixeira ^{d.e}, Gábor Várbíró ^{ab}, Torbjørn Ekrem ^{ac,*}

Table 1

Overall barcode coverage for selected major groups.

Taxonomic group	Barcode marker	Species in checklist	Barcode coverage [%]		Database source
			≥1 barcode	≥5 barcodes	
Marine invertebrates - ERMS	COI	16,962	22.1	9.9	BOLD
Marine invertebrates - AMBI	COI	3012	47.6	25.0	BOLD
Marine fish ^a	COI	1489	82.1	64.3	BOLD
Diatoms (marine and freshwater)	rbcL/18S	3716		N/A	Diat.barcode v7
Freshwater vascular plants	rbcL/matK	683	83.0	69.4	BOLD
Freshwater invertebrates	COI	4502	64.5	41.8	BOLD
Freshwater fish	COI	627	87.9	66.2	BOLD/NCBI
Freshwater fish	12S	627	36.4	-	Mitofish


^a Actinopterygii, Elasmobranchii and Holocephali.

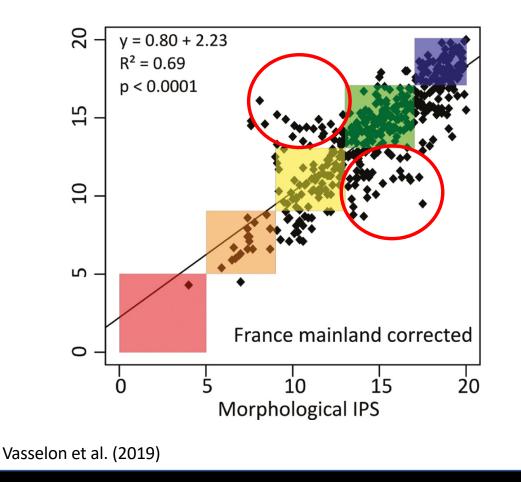
Improve taxonomic backbone

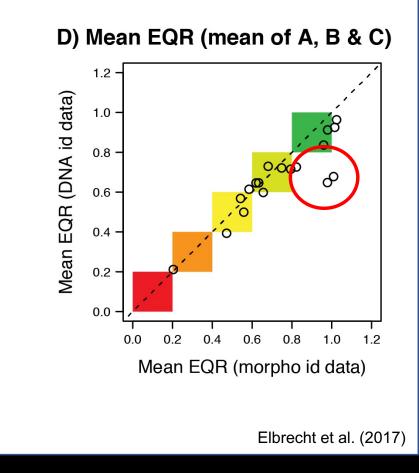
- Improve available ref DB, link to ecological information
- Lot's of work, but low hanging fruits, taxonomic initatives exist; GBOL, BeBOL, SweBOL, iBOL, AquaBOL.sk, PolBOL etc.
- THINK INTERNATIONAL!

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/scitotenv

Review


DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work



Hannah Weigand ^a, Arne J. Beermann ^b, Fedor Čiampor ^c, Filipe O. Costa ^{d.e}, Zoltán Csabai ^f, Sofia Duarte ^{d.e}, Matthias F. Geiger ^g, Michał Grabowski ^h, Frédéric Rimet ⁱ, Björn Rulik ^g, Malin Strand ^J, Nikolaus Szucsich ^k, Alexander M. Weigand ^{a,b}, Endre Willassen ¹, Sofia A. Wyler ^m, Agnès Bouchez ^j, Angel Borja ⁿ, Zuzana Čiamporová-Zaťovičová ^c, Sónia Ferreira ^o, Klaas-Douwe B. Dijkstra ^p, Ursula Eisendle ^q, Jörg Freyhof ^r, Piotr Gadawski ^h, Wolfram Graf ^s, Arne Haegerbaeumer ^t, Berry B. van der Hoorn ^p, Bella Japoshvili ^u, Lujza Keresztes ^v, Emre Keskin ^w, Florian Leese ^b, Jan N. Macher ^p, Tomasz Mamos ^h, Guy Paz ^x, Vladimir Pešić ^y, Daniela Maric Pfannkuchen ^z, Martin Andreas Pfannkuchen ^z, Benjamin W. Price ^{aa}, Buki Rinkevich ^x, Marcos A.L. Teixeira ^{d.e}, Gábor Várbíró ^{ab}, Torbjørn Ekrem ^{ac,*}

But when do we accept / recject? How to harmonize?

Who can do the work?

UNIVERSITÄT DUISBURG ESSEN

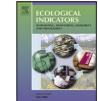
Open-Minded

- Over 35 commercial labs offering services (and many are good!)
- More and more state agencies have own labs
- Central analysis aspects

A constitution is needed

UNIVERSITÄT DUISBURG ESSEN

Open-Minded


Bilder: WikiCommons

We urgently need guidance & standards!(!)

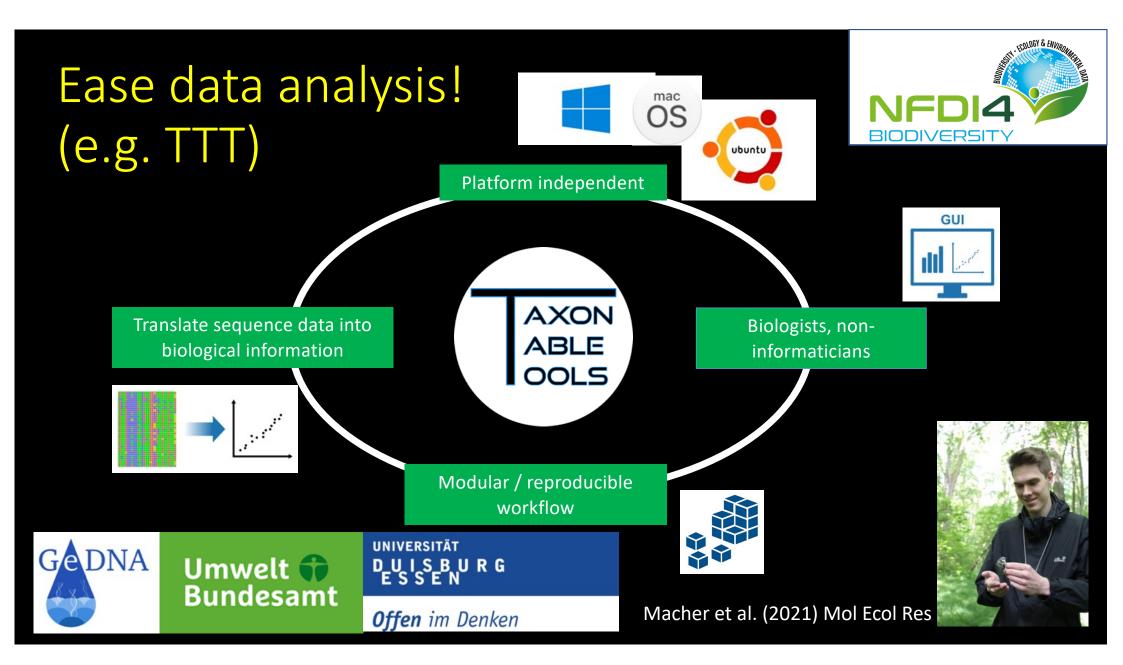
Contents lists available at SciVerse ScienceDirect

Ecological Indicators

'Gamechanging' £10m environmental DNA project to map life in world's rivers

eBioAtlas programme aims to identify fish, birds, amphibians and land animals in freshwater systems from the Ganges to the Mekong

A giant stingray in the Mekong River, near the Cambodian and Vietnam border. It is hoped the scheme will help identify species at risk of extinction. Photograph: Zeb Hogan/AP


journal homepage: www.elsevier.com/locate/ecolind

thousand

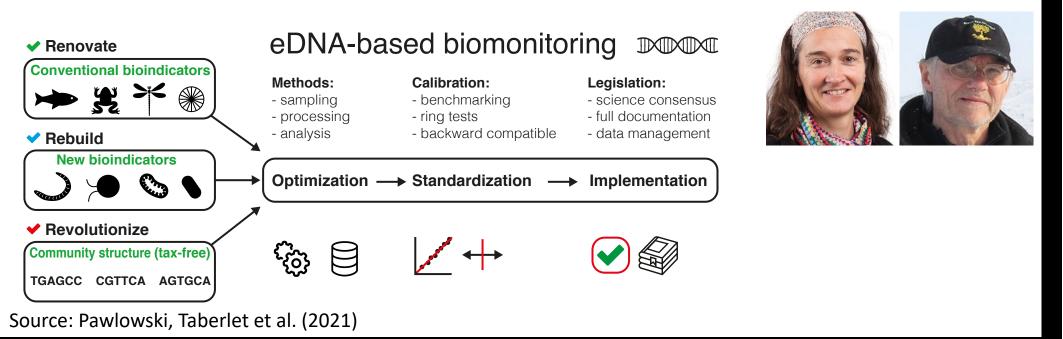
Three hundred ways to assess Europe's surface waters: An almost complete overview of biological methods to implement the Water Framework Directive

Sebastian Birk^{a,*}, Wendy Bonne^b, Angel Borja^c, Sandra Brucet^b, Anne Courrat^d, Sandra Poikane^b, Angelo Solimini^e, Wouter van de Bund^b, Nikolaos Zampoukas^b, Daniel Hering^a

- We need standards and guidance (revolution -> consitution)
- Certification / QC instances
- We need central coordination (e.g. linked to ECOSTAT)

The future of biotic indices in the ecogenomic era

Contents lists available at ScienceDirect


Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

The future of biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding in biological assessment of aquatic ecosystems

Jan Pawlowski ^{a,*}, Mary Kelly-Quinn ^b, Florian Altermatt ^c, Laure Apothéloz-Perret-Gentil ^a, Pedro Beja ^d, Angela Boggero ^c, Angel Borja ^f, Agnès Bouchez ^g, Tristan Cordier ^a, Isabelle Domaizon ^g, Maria Joao Feio ^h, Ana Filipa Filipe ^d, Riccardo Fornaroli ⁱ, Wolfram Graf^j, Jelger Herder ^k, Berry van der Hoorn ¹, J. Iwan Jones ^m, Marketa Sagova-Mareckova ⁿ, Christian Moritz ^o, Jose Barquín ^p, Jeremy J. Piggott ^q, Maurizio Pinna ^r, Frederic Rimet ^g, Buki Rinkevich ^s, Carla Sousa-Santos ^t, Valeria Specchia ^r, Rosa Trobajo ^u, Valentin Vasselon ^g, Simon Vitecek ^v, Jonas Zimmerman ^w, Alexander Weigand ^{x,y}, Florian Leese ^x, Maria Kahlert ^z

Realistic plans, important milestones

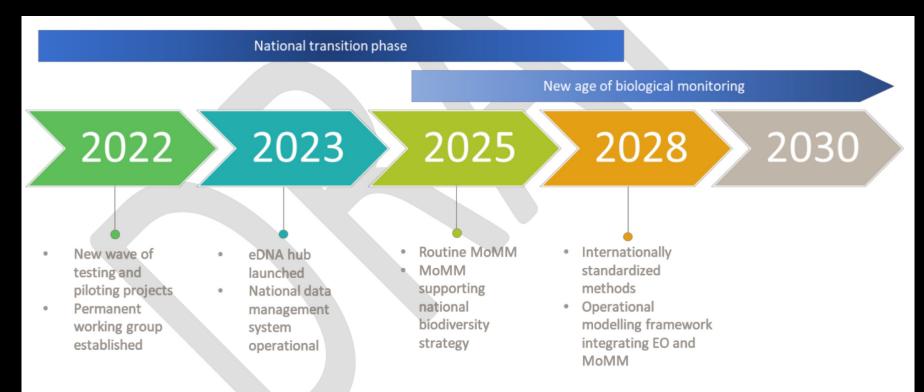



Figure 6. Timeline for the transition into the new age of biological monitoring.

Source: 'Stolen' from the Finnish roadmap draft today (12.1.2021)

UNIVERSITÄT DUISBURG ESSEN

Open-Minded

